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Abstract

When children encounter challenges, parents often wonder:
Should I let my child figure it out or take over? How parents
resolve this dilemma shapes key developmental outcomes, yet
we know little about the cognitive mechanisms that drive these
decisions. Here, we model parental “take over” decisions as a
Bayesian solution to a Partially Observable Markov Decision
Process (POMDP) and qualitatively compare model predictions
with behavioral data from parent-child interactions. We find
that two core beliefs guide intervention: the child’s probability
of success and the utility of the task. Parents are more likely
to take over when they believe their child is less skilled and the
task is harder, and more likely to step back when they expect the
rewards of independent effort to outweigh the costs. The model
captures how these beliefs interact to shape decision-making
and, together with the empirical data, reveals the cognitive
computations that underlie parental intervention.
Keywords: parenting; decision-making; Bayesian inference;
social cognition

Introduction
Imagine a young child trying to open a box, their small fingers
fumbling with the latches as they press, pull, and twist. As
the caregiver, you watch from the sidelines, uncertain whether
they can succeed on their own or how long it might take. You
grapple with whether you should let the child keep trying, or
take over and open the box for them. On one hand, you want to
allow the child to navigate challenges and develop new skills.
On the other hand, you don’t want them to get overly frustrated
or waste time on a task that is simply too hard.

This fundamental parenting dilemma – whether to take over
or allow independence – has captured academic and public in-
terest for decades (e.g., Ainsworth, Blehar, Waters, & Wall,
1978; Barber, 1996; Baumrind, 1966; Gopnik, 2023; Grolnick
& Pomerantz, 2009; Leonard, Martinez, Dashineau, Park, &
Mackey, 2021; Lythcott-Haims, 2015; Miller & Bromwich,
2019; Stogdill, 1936). Importantly, how parents navigate
this dilemma is closely linked to a variety of child outcomes.
While taking over can be beneficial when a task exceeds a
child’s abilities or poses safety concerns, frequent takeovers
on age-appropriate challenges – a behavior known as “over-
parenting” – reduces children’s persistence, executive func-
tioning, and emotion regulation skills as early as age four
(Leonard et al., 2021; Obradivic, Sulik, & Shaffer, 2021;
Joussemet, Koestner, Lekes, & Landry, 2005).

Understanding parents’ decision to intervene is thus not
only important for theories of parenting and decision-making,

but also an essential first step to informing interventions that
foster children’s autonomy, motivation, and resilience from an
early age. However, to date, little research has examined how
parents navigate this decision-making process. In this study,
we aim to fill this gap by formalizing and empirically testing
the cognitive computations that guide parents’ decisions to
take over.

Past studies have often conceptualized parents’ tendency
to intervene as a fixed, trait-level factor shaped by individ-
ual dispositions, economic forces, and cultural norms. For
instance, parents who are more anxious (Segrin, Woszidlo,
Givertz, & Montgomery, 2013) and those who view the world
as a threatening place (Gurland & Grolnick, 2005) tend to
intervene more. Furthermore, parents intervene more in en-
vironments with high income inequality and strong emphasis
on academic attainment (Doepke, Sorrenti, & Zilibotti, 2019),
as well as in cultures where children are viewed as vulnerable
and in constant need of protection (Lancy, 2014).

However, we propose that parental intervention is not
merely a fixed parenting style shaped by stable traits or cul-
tural norms, but also a dynamic, state-level decision-making
process in which parents flexibly weigh the costs, rewards,
and uncertainties of stepping in. In this view, intervention
resembles an algorithmic decision-making process aimed at
achieving a computational goal: choosing whether to step in
or step back in a way that maximizes expected utility under
uncertainty. This computational perspective is not incompati-
ble with trait- or culture-based accounts; rather, the two shape
behavior at different levels: trait- and cultural-level factors
serve as inputs that shape how parents perceive the decision
space. For example, parental anxieties or high-pressure envi-
ronments may increase the perceived cost of failure – making
intervention more likely – while environments where children
are expected to shoulder real-world responsibilities may in-
crease the perceived reward of independent problem solving.
Yet, despite these differences, we argue that parents across
contexts are solving the same problem: deciding whether to
take over or step back based on an assessment of costs, re-
wards, and uncertainties.

Here, we formalize the challenge of deciding whether to
take over as a Partially Observable Markov Decision Process
(POMDP). We then compare the predictions from a proba-
bilistic model of this POMDP against parents’ behaviors dur-
ing real-time interactions with their children.



Broadly, we propose that two calculations drive parents’
decisions about whether or not to intervene: (1) the child’s
probability of success and (2) the utility structure of the task.
Central to the calculation of children’s probability of success is
parents’ beliefs about their child’s skill. Intuitively, if a parent
believes that their child is not very skilled at a certain task (e.g.,
opening a box, putting on their shoes), they may be more likely
to take over because they estimate that their child’s probability
of success is low. In contrast, if the parent believes that the
child is highly skilled, they may be more likely to step back
because they estimate that the child’s probability of success is
high. However, a child’s true skill level is often not directly
observable to the parent, especially given the frequency with
which children encounter new tasks and acquire new skills.
Instead, the parent must rely on their prior beliefs about the
child’s skill and continuously update these beliefs based on
their observations of the child’s successes and failures as the
task unfolds.

In addition to skill, parents also likely weigh the utility of
their child’s efforts. In other words, parents may consider
how costly or rewarding it would be (for themselves or for
their child) if their child attempts the task independently. This
means that even when parents perceive their child’s skill level
similarly, their responses may vary across situations based on
their perceived utility of the child’s independent actions. For
example, even if a parent knows their child is quite skilled
at getting dressed independently, being in a rush (and thus
perceiving the cost of time as high) may lead them to take over.
In a similar situation where parents are focused instead on what
their child can learn from getting dressed (and thus perceiving
the reward of learning as high), they may choose to step back.
In short, parents likely aim to balance competing priorities by
choosing an action that minimizes potential costs (e.g., time
lost, frustration) while maximizing rewards (e.g., learning,
a sense of accomplishment). This account is in line with
decades of research in cognitive science showing that human
decision-making often involves utility-based trade-offs (e.g.,
Kahneman & Tversky, 2013; Simon, 1955; Rangel, Camerer,
& Montague, 2008).

Below, we elaborate on the computational framework that
formalizes these principles and then demonstrate how this
framework qualitatively predicts real-time decision-making
during parent-child interactions. Our experimental work fo-
cuses on parents of preschool-aged children, a developmental
period in which excessive parental takeovers are common and
detrimental to children’s cognitive development (Leonard et
al., 2021; Obradivic et al., 2021; Joussemet et al., 2005;
Shachnai, Asaba, Hu, & Leonard, 2025).

Computational Framework
The Takeover POMDP
We model a parent’s decision-making process as the solution
to a Partially Observable Markov Decision Process (POMDP).
This framework conceptualizes parents as decision-makers
navigating uncertainty: Parents continually update their be-

liefs about their child’s skill by observing their child’s suc-
cesses or failures while attempting a task and weigh the trade-
offs between allowing their child to keep trying versus taking
over. In this framework, parents consider two key factors:
their beliefs about their child’s probability of success and the
utility structure of the game (i.e., the costs and rewards; Fig-
ure 1). Below, we explain these factors in detail.

The Takeover POMDP is defined by the tuple
⟨S,A,O, 𝑇, 𝑅⟩: 𝑠 ∈ S = {𝑝 = [0, 1], terminal} is the
state which represents the child’s unobserved true skill level
(𝑝, the parameter of a Bernoulli distribution) and whether
the task has been completed (terminal = 1); 𝑎 ∈ A =

{continue, takeover} are the actions available to the parent;
𝑜 ∈ O = {success, failure} are the observations made by the
parent; 𝑇 (𝑠′ |𝑠, 𝑎) is the transition function; and 𝑅(𝑠, 𝑎) is
the reward function. During each timestep 𝑡, the parent ob-
serves 𝑜𝑡 = {success, failure} with the following probabilities:
𝑃(𝑜𝑡 = success|𝑠, 𝑎) = 𝑝 and 𝑃(𝑜𝑡 = failure|𝑠, 𝑎) = 1 − 𝑝.

Each timestep 𝑡, the child succeeds with probability 𝑝 and
fails with probability 1− 𝑝, so a child with a higher skill level
is likely to succeed in fewer attempts. Skill level is static
throughout the episode. If the child succeeds (𝑜𝑡 = success),
the episode terminates and the parent receives a reward of
𝑟success. This reward might represent achievement of the task
as well as the child’s learning or sense of accomplishment
from having completed it themselves. If the child fails (𝑜𝑡 =
failure), the parent incurs a waiting cost of 𝑟𝑐 and the episode
continues 𝑡 = 𝑡+1. This cost could reflect time lost, frustration,
or other resources expended.

At each timestep 𝑡 (equivalent to one second in our experi-
mental data), the parent chooses to either wait (𝑎𝑡 = continue)
and have the child attempt the task again or takeover (𝑎𝑡 =

takeover). If the parent chooses takeover, the task is com-
pleted, the episode is terminated, and the parent receives a
reward of 𝑟takeover where 𝑟takeover < 𝑟success because although
taking over achieves the goal of the task, it lacks the reward
that comes from allowing the child to succeed on their own
(e.g., learning, confidence, sense of accomplishment).

The Bayesian Parent
The parent maintains a belief state 𝑏𝑡 over the child’s hid-
den skill level 𝑝. Since 𝑝 is the parameter for a Bernoulli
distribution, we model this belief using a Beta distribution:

𝑏𝑡 (𝑝) ∼ Beta(𝛼𝑡 , 𝛽𝑡 )

where 𝛼𝑡 , 𝛽𝑡 parameterize the mean and variance of their be-
liefs about 𝑝 at time 𝑡 (mean: 𝛼

𝛼+𝛽 , variance: 𝛼𝛽

(𝛼+𝛽)2 (𝛼+𝛽+1) ).
The Beta distribution is a flexible way to represent beliefs
about probabilities and is updated as new evidence (child suc-
cess or failure) is observed.

Initially, the parent starts with prior parameters (𝛼0, 𝛽0),
which reflect their initial belief about the child’s skill. Af-
ter each attempt by the child, this belief is updated based on
whether the child succeeds or fails. Because the Beta distri-
bution is the conjugate prior of a Bernoulli random variable,
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Figure 1: The Takeover POMDP. Based on their beliefs, 𝑏,
about the child’s true probability of success 𝑝, the parent
decides at each timestep whether to takeover (end the task
and receive 𝑟takeover) or continue and let the child try while
incurring a time cost 𝑟𝑐. The child either succeeds with
probability 𝑝 or fails with probability 1 − 𝑝. If the child
succeeds, the task ends, and 𝑟success is received. Otherwise,
the parent updates their beliefs, and the decision is repeated.

Bayesian updating of belief, 𝑏𝑡+1 (𝑝) ∝ 𝑃(𝑝 |𝑜𝑡 )𝑏𝑡 (𝑝), can be
performed analytically:

𝑏𝑡+1 (𝑝) ∼ Beta(𝛼𝑡 + I[𝑜𝑡 = success],(1)
𝛽𝑡 + I[𝑜𝑡 = failure])

Rational Takeovers
The parent’s goal is to maximize their expected discounted
reward given their current beliefs. While solving for the op-
timal policy in POMDPs is generally intractable, we exploit
the structure of the Takeover POMDP to derive a scalable al-
gorithmic solution. Recall that the belief of the parent 𝑏 is
a Beta distribution with parameters (𝛼, 𝛽), where 𝛽 can be
thought of as the number of failed attempts (Jeffreys, 1998).
Then, the expected reward after a takeover is simply:

𝑉takeover (𝛼, 𝛽) = 𝑟takeover

because the game ends after a takeover. The expected reward
when the parent lets the child continue is:

𝑉continue (𝛼, 𝛽) = −𝑟𝑐 + (E[𝑏])𝑟success(2)
+ (1 − E[𝑏])𝑉 (𝛼, 𝛽 + 1)

where E[𝑏] = 𝛼
𝛼+𝛽 is the expected value of the parent’s belief

about 𝑝, the probability of the child succeeding on their own.
Since 𝛼 remains constant throughout (the process ends if the
child succeeds, i.e., 𝛼𝑡 = 𝛼0), we can narrow our focus to
computing 𝑉 (𝛽).

Recall from equation (1) that 𝛽 is incremented after each
failure. Further, equation (2) defines the value of the current
belief recursively in terms of the value of the belief after seeing
an additional failure. Based on these two features, our strategy
to solve for the optimal policy is to work backward. We pick
a large enough timestep 𝑡 = max where we assume the parent
will take over. Thus at this final timestep, 𝑉 (𝛽max) = 𝑟takeover.
This grounds the recursion and we can compute𝑉 (𝛽) for (𝛽 =

𝛽max−1, 𝛽max−2, . . . , 𝛽0) by going backwards leveraging the
following relation between 𝑉 (𝛽) and 𝑉 (𝛽 + 1):

𝑉 (𝛽) = max {−𝑟𝑐 + E[𝑏]𝑟success + (1 − E[𝑏])𝑉 (𝛽 + 1), 𝑟takeover}

At each belief state 𝑏 = (𝛼, 𝛽), the optimal action 𝑎∗ is:

𝑎∗ =

{
𝑎continue if 𝑉continue (𝛼, 𝛽) ≥ 𝑉takeover (𝛼, 𝛽),
𝑎takeover otherwise.

Finally, to compare to our experimental data, we compute
the probability of a takeover happening, 𝑃(Take over). First,
we compute 𝑡∗, the first time step where the parent chooses to
take over by finding the smallest 𝛽𝑡∗ such that𝑉continue (𝛼, 𝛽) <
𝑉takeover (𝛼, 𝛽). Then the number of elapsed timesteps is equal
to 𝛽𝑡∗ − 𝛽0 since 𝛽 is incremented by one each timestep from
the given prior 𝛽0. Finally, 𝑃(Take over) = (1 − 𝑝)𝑡∗ i.e., the
probability that the child fails for 𝑡∗ timesteps.

By recursively computing the value function 𝑉 (𝛽) and de-
termining the optimal action at each belief state, we can derive
the optimal takeover policy for the parent. The policy indi-
cates whether the parent should allow the child to continue
attempting the problem or take over as a rational calculus
based on their posterior beliefs about the child’s success prob-
ability and the underlying costs and rewards of the decision
making problem.

The model makes a number of novel quantitative predic-
tions that align with intuitions (Figure 2). When the value of
the child succeeding on their own, 𝑟success is high, or a parent
is more optimistic about their child’s ability, E[𝑏0], the like-
lihood of a takeover is lower. The cost per timestep shows the
opposite relation. When the cost of time, 𝑟𝑐, is higher, parents
are more likely to take over. Finally, harder tasks, i.e., those
with a lower 𝑝 will have a higher probability of takeover.

Experiment
We use experimental data to test our model predictions that
parents are more likely to take over when they believe that (1)
their child is less skilled, (2) the task is more difficult, and (3)
the learning rewards are lower.

Our parent-child interaction task involved children getting
dressed in hockey clothes. This task is particularly well-
suited for capturing parent takeovers because parent takeovers
during the preschool years are very common when children
get dressed (Shachnai et al., 2025). Furthermore, hockey
clothes are novel to most children, allowing us to control for
individual differences in prior experience (and we excluded
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Figure 2: Model predictions for 𝑃(Take Over) as a function
of the parent’s beliefs about the child’s probability of success
(left), the value of the child succeeding on their own
(middle), and the cost per timestep (right). Each line shows
the prediction for a different task difficulty.
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Figure 3: Average time it took children to complete each
subtask of the hockey clothes task in a preliminary study.
Subtask 1: Hold first shinguard against leg; Subtask 2:
Fasten first strap of first shinguard; Action 3: Fasten second
strap of first shinguard; Subtask 4: Hold second shinguard
against leg; Subtask 5: Fasten first strap of second
shinguard; Subtask 6: Fasten second strap of second
shinguard; Subtask 7: Pull chestguard over head; Subtask 8:
Pull first arm through loop of chestguard; Subtask 9: Pull
second arm through loop of chestguard; Subtask 10: Fasten
first strap of chestguard; Subtask 11: Fasten the second strap
of chestguard.

children from our sample who had experience wearing hockey
clothes). Putting on the hockey clothes required completing
11 subtasks (see Figure 3 caption), and we measured how
many of these subtasks parents completed for their child (i.e.,
took over) as a function of subtask difficulty, learning rewards,
and beliefs about child skill.

To estimate subtask difficulty, we used the average time it
takes children to complete each of the 11 subtasks involved
in putting on the hockey clothes (see Figure 3). We obtained
these averages using a preliminary study in which we asked
twenty 4-5-year-old children to complete the task indepen-
dently and measured the time it took them to complete each
subtask. Because there is a cost to each unit of time, the harder
the subtask, the higher the expected cost. We hypothesized
that parents would be more likely to take over on harder sub-
tasks that take children more time to complete (and thus are
more costly).

To measure perceived learning rewards, we relied on par-
ents’ assignment to one of two experimental conditions. Par-
ents were either assigned to a Learning condition, in which
the dressing task was framed as a learning opportunity, or a
Control condition, in which it was not. We hypothesized that
parents would take over less in the Learning condition, where
they expect a higher reward for allowing children to complete
the task independently.

Finally, we assessed parents’ beliefs about their child’s skill
using self-reports obtained as part of a larger survey that par-
ents completed after interacting with their child. We hypoth-

esized that parents would take over more when they believe
their child is less skilled.

Note that the behavioral and self-report data used in this
paper come from the same dataset as in Shachnai et al., 2025.
However, that prior work only reported findings related to
the experimental manipulation of learning rewards (i.e., the
effect of the Learning vs. Control condition on parental taking
over). While the learning manipulation itself is not new, its
formal incorporation into a unified modeling framework –
alongside newly analyzed constructs like subtask difficulty
and skill beliefs – represent a novel contribution.

Methods
Participants Participants were 60 parents and their 4-5-
year-old children (M = 5.03, SD = .57; 50% girls) recruited
from an urban children’s museum. Parents were randomly
assigned to the Learning condition (N = 30; 57% mothers,
43% fathers) or the Control condition (N = 30; 67% mothers,
30% fathers, 3% legal guardians). Parental education ranged
from 10 to 20 years (M = 16.61, SD = 2.58; missing data from
1 parent) and parental median income was $175,000 (M =
$136,245, SD = $69,395; missing data from 5 parents). The
racial makeup of the children in the final sample was as fol-
lows: 48% White, 20% Asian, 13% Black, 10% multiracial,
2% American Indian or Alaskan, 3% another race, and 3%
preferred not to answer, and the ethnic makeup was 77% not
Hispanic/Latino, 17% Hispanic/Latino, 5% another ethnicity,
and 2% preferred not to answer. Following pre-registered
exclusion criteria, 26 dyads were recruited but excluded for
the following reasons: the child stopped midway (N = 10),
the parent stopped midway (N = 1), experimenter error (N =
8), the child had a diagnosis of autism or oppositional defiant
disorder (N = 5), or the child had prior experience wearing
hockey gear (N = 2).

Procedure Parents and children were introduced to the
study using a cover story, explaining that they would play a fun
game requiring the child to first put on hockey clothes. This
cover story aimed to reduce parents’ awareness of being ob-
served during the dressing task, encouraging more naturalistic
behavior. After explaining the cover story, the experimenter
asked parents and children to sit next to each other. Parents
were given a note to read while the experimenter engaged the
child with warm-up questions.

The note contained the key manipulation framed as a
‘Fun Fact.’ In the Learning condition, the note empha-
sized that putting on clothes helps children develop essen-
tial life skills, such as problem-solving and self-confidence.
In the Control condition, the note emphasized that putting
on clothes enhances children’s interaction with the mu-
seum, without mentioning learning (for full wording, see
https://tinyurl.com/TOexperiment). In both conditions, par-
ents were told that their child could benefit from the activity,
but the specific type of benefit varied: knowledge and skills
in the Learning condition, and a deeper museum interaction
in the Control condition.
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The experimenter then demonstrated how to put on the
hockey clothes, provided a full-length mirror, and pointed to
pictures above the mirror showing how the clothes should
look when worn. After the activity, parents completed a
questionnaire with exploratory questions, including one that
assessed their belief about their child’s skill. Specifically,
parents were asked how capable they believed their child is at
putting on clothes, with responses ranging from 1 (‘not at all
capable’) to 5 (‘extremely capable’).
Measures Parent takeovers. Our key dependent variable
was the percentage of subtasks (out of 11) that parents com-
pleted for their child while their child was getting dressed.

Subtask difficulty. We used our preliminary study’s mea-
sure of the average time it takes children to independently
complete each subtask as a proxy of that subtask’s difficulty.

Beliefs about child skill. Parents’ beliefs about their child’s
skill were measured by their response to the question asking
how capable they think their child is at putting on clothes, on

a scale from 1 (not at all capable) to 5 (extremely capable).

Results

We conducted a generalized linear mixed-effects model to
predict parent takeovers on each subtask, using parents’ beliefs
about their child’s skill, subtask difficulty, and the learning
rewards (i.e., whether parents were assigned to the Learning
or Control condition) as predictors, while including random
intercepts for participant.

We found that all three factors independently predicted par-
ent takeovers. That is, parents took over more when they
believed their child was less skilled (𝛽 = -1.06, 95% CI [-1.46,
-.68], p < .001), when subtask difficulty was greater (𝛽 = .47,
95% CI [.27, .68], p < .001) and when perceived learning
rewards were lesser (i.e., being in the Control vs. Learning
condition; 𝛽 = -.47, 95% CI [-.87, -.10], p = .013) (Figure 4).

Additionally, we ran a second model that included all pos-
sible interactions between beliefs about child skill, subtask



difficulty, and learning rewards. This model provided a signif-
icantly better fit for the data than the main-effects-only model,
𝜒2 (4) = 14.57, 𝑝 = .006. There was a significant interaction
between parents’ beliefs about child skill and subtask difficulty
(𝛽 = -.38, 95% CI [-.66, -.12], p = .005). Specifically, when
parents believed their child was not skilled at getting dressed,
harder tasks significantly increased their likelihood of taking
over (𝛽 = .89, 95% CI [.52, 1.26], p < .001). However, when
parents believed their child was highly skilled, subtask diffi-
culty did not predict likelihood of taking over (𝛽 = .12, 95%
CI [-.20, .44], p = .456).

We also found a marginally significant interaction between
parents’ beliefs about child skill and the value placed on the
child doing it themselves (i.e., being in the Learning vs. Con-
trol condition; 𝛽 = .37, 95% CI [-.66, -.12], p = .064). Specif-
ically, when parents believed their child was not skilled, being
in the Learning condition significantly decreased their likeli-
hood of taking over (𝛽 = -.83, 95% CI [-.1.36, -.29], p = .003).
However, when parents believed their child was highly skilled,
being in the Learning condition did not predict the likelihood
of taking over (𝛽 = -.08, 95% CI [-.63, .48], p = .787). There
was no significant interaction between subtask difficulty and
learning rewards (𝛽 = -.09, 95% CI [-.31, .12], p = .406) or
between time costs, learning rewards, and beliefs about child
skill (𝛽 = -.05, 95% CI [-.31, .23], p = .732).

Model Comparison
Our goal is to predict the probability of a takeover across ex-
perimental conditions while varying the subtask difficulty and
whether or not the child’s independent success is framed as
rewarding in and of itself, and accounting for parents’ percep-
tion of their child’s skill. The probability of success in a given
subtask, 𝑝st, was set to be inversely proportional to the average
number of seconds it took for children to complete that sub-
task (subtask difficulty) 𝑝st = 1/sec. The parent’s prior over
the child’s skill varied between their true skill in the case of
the most capable parental belief and decreased exponentially
from there. Specifically, E[𝑏0] = 𝑝1

st if their belief was a 5 out
of 5 (extremely capable), E[𝑏0] = 𝑝2

st if they believed their
child’s skill was a 4 out of 5 and so on. Finally, when the
parent was in the Learning condition, we add 𝑟learn to 𝑟success
to account for the hypothesized increase in value of the child
completing the subtask independently.

The two free parameters, 𝑟learn = 20 and 𝑟𝑐 = 0.001 (the
cost per timestep), were optimized to fit the data. These two
free parameters were found by minimizing mean-square error
(MSE) through grid search followed by a downhill simplex op-
timizer. Finally, we fixed 𝑟takeover = 0 and 𝑟success = 1 as these
features of the model were not experimentally manipulated.

Lesions and Alternative Models Figure 4 compares the
full model described above to two lesioned models and one
baseline. Lesion: Skill Beliefs removes the influence of the
parent’s belief ratings on E[𝑏0], Lesion: Subtask Difficulty
sets 𝑝st = 1/sec where sec is the average duration of all
subtasks. These two models use the same two free parameters

as the full model since they each ablate part of the model
structure. Finally, Random Intervention is a single parameter
baseline model that assumes that parents take over with a fixed
probability 𝑝.

The full model captures multiple features of the human
data while the lesioned models do not (Figure 4). Like the
human data, the full model shows that harder subtasks had a
higher probability of takeover. This relation was modulated
(flatter slope) by parental beliefs about their child’s skill and
assignment to the Learning condition. The probability of
takeover was overall lower the more confidence the parent had
in their child’s skill and when the task was framed as learning.
In comparison, when beliefs about skill were lesioned, only
the effect of subtask difficulty and learning condition were
observed. Likewise, when subtask difficulty was lesioned,
there was only the effect of skill belief and condition. Finally,
the Random Intervention model only captures the effect of
subtask difficulty, and since it does not require planning with
a utility calculus, there is no effect of learning condition.

General Discussion
Parents often face a dilemma: Should they allow their child
to struggle to complete a task independently or take over and
solve the task for them? How parents navigate this tension
significantly impacts children’s development, with frequent
takeovers linked to poorer persistence, executive functioning,
and emotion regulation skills (Leonard et al., 2021; Obradivic
et al., 2021; Joussemet et al., 2005). How do parents decide
when to take over and when to step back? We provide both
qualitative and quantitative evidence that parental intervention
can be modeled as a rational probabilistic planning process.
Our model predicts that parents are more likely to take over
when they perceive their child as less capable of success and
when the costs of children’s independent effort exceed the
expected rewards. Supporting this, empirical data show that
parents of 4- to 5-year-old children took over more during a
novel dressing task when they believed their child was less
capable, the subtask was harder, and the reward for indepen-
dent action (i.e., learning) was lower. Taken together, this
work suggests that parental intervention is a dynamic compu-
tational process driven by beliefs about children’s probability
of success, costs, and rewards.
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